Finite-Width Neural Networks: A Landscape Complexity Analysis

Date and Time Date and Time

2023-11-07 17:30

2023-11-07 17:30

Map Location

Zoom (Online)

Finite-Width Neural Networks: A Landscape Complexity Analysis

In this talk, I will present an average-case analysis of finite-width neural networks through permutation symmetry. First, I will give a new scaling law for the critical manifolds of finite-width neural networks derived from counting all partitions due to neuron splitting from an initial set of neurons. Considering the invariance of zero neuron addition, we derive the scaling law of the zero-loss manifolds that is exact for the population loss. In a simplified setting, a factor 2log2 of overparameterization guarantees that the zero-loss manifolds are the most numerous. Our complexity calculations show that the loss landscape of neural networks exhibits extreme non-convexity at the onset of overparameterization, which is tamed gradually with overparameterization, and it effectively vanishes for infinitely wide networks. Finally, based on the theory, we will propose an `Expand-Cluster’ algorithm for model identification in practice.

Speaker Information

Berfin Şimşek, New York University